SCHEME OF COURSE WORK:

Course Details:

Course Title	Computations Lab					
Course Code	19ME2165	LTPC	0	0	3	1.5
Program	M.Tech.					
Specialization	Thermal Engineering					
Semester	Ι					
Prerequisites	•••••					
Course to which is a prerequisite	NA					

Course Outcomes:

CO1	Apply various commands to do various matrix operations and plot 2D/3D figures to analyse data
CO2	Develop programs to find roots of an equation and solve system of linear equations
CO3	Create programs for interpolation and regression of give data
CO4	Develop programs to solve ordinary differential equations
CO5	Use software toolboxes to solve problems related to neural networks, fuzzy logic and genetic algorithms.

Program Outcomes:

PO	Program Outcome (PO)
Code	
PO1	exhibit in-depth knowledge in thermal engineering specialization
PO2	think critically and analyse complex engineering problems to make creative advances in theory and practice
PO3	solve problem, think originally and arrive at feasible and optimal solutions with due consideration to public health and safety of environment
PO4	use research methodologies, techniques and tools, and will contribute to the development of technological knowledge
PO5	apply appropriate techniques, modern engineering tools to perform modelling of complex engineering problems with knowing the limitations
PO6	understand group dynamics, contribute to collaborative multidisciplinary scientific research
PO7	demonstrate knowledge and understanding of engineering and management principles and apply the same with due consideration to economical and financial factors
PO8	communicate complex engineering problems with the engineering community and society, write and present technical reports effectively
PO9	engage in life-long learning with a high level of enthusiasm and commitment to improve knowledge and competence continuously
PO10	exhibit professional and intellectual integrity, ethics of research and scholarship and will realize the responsibility towards the community
PO11	examine critically the outcomes of actions and make corrective measures

Course Outcome Vs Program Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		S							М			
CO2		S							М			
CO3		S		S					М			
CO4		S		S					М			
CO5		S		S					Μ			

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:

Assignment/Quiz/Seminar/Case Study, Mid term exam and End term examination.

Week	Title of the	CO	Sample Questions	Teaching-	Assessment
	Experiment			Learning Strategy	method & Schedule
1	Introduction to MATLAB		 How to launch MATLAB What are m-files? 	Lecture and Practice on MATLAB	No evaluation, Practice session
2	Basic commands like representing arrays, matrices, reading elements of a matrix, row and columns of matrices, random numbers.		 How to represent arrays, matrices in MATLAB How to generate random numbers using MATLAB 	Lecture and Practice MATLAB	Day to Day Evaluation and Record Submission, Mid term exam (week 9)
3	Transpose, determinant, inverse, Eigenvalues and Eigenvectors of a matrix		 What are the MATLAB functions to transpose, find determinant and find inverse of a matrix? What are the MATLAB functions to find eigen values and eigen vectors of a matrix? 	Lecture and Practice MATLAB	Day to Day Evaluation and Record Submission, Mid term exam (week 9)
4	Plotting tools for 2 dimensional and 3 dimensional plots, putting legends, texts, using subplot tool for multiple plots.		 Plot the variation of y v/s x if x = [1 2 3 4 5]; y = [1 4 9 16 25] How do create subplots using MATLAB 	Lecture and Practice MATLAB	Day to Day Evaluation and Record Submission, Mid term exam (week 9)
5	Write a program for finding the roots of an equation using (1) Bisection (2) Newton methods		 Write a program to find roots of the equation x³ - 6x² + 11x - 6 = 0 using bisection method. Show the results Write a program to find the roots of the equation x - cos(x) = 0 using Newton-Raphson method. Show the results 	Lecture and Practice MATLAB	Day to Day Evaluation and Record Submission, Mid term exam (week 9)

Teaching-Learning and Evaluation

6	Write a program for solving system of linear equations using Gauss elimination method	1. W	hat is Ga	uss elimi	nation mo	ethod?			Lecture and Practice MATLAB	Day to Day Evaluation and Record Submission, Mid term exam (week 9)`
7	Write a program for finding natural cubic spline that interpolates a table of values	1. W	hat are c	ubic splin	es?				Lecture and Practice MATLAB	Day to Day Evaluation and Record Submission, Mid term exam (week 9)
8	Revision of Cycle 1									, , ,
9	Mid Term Examination									
10	Write a program for determining least square polynomial fit of degree m for given data	Fit a least x y	square p -3 0.9	oolynomia -2 0.8	l fit of de -1 0.4	-0.2 0.2	the follow 1 0.1	ving data 3 0	Lecture and Practice MATLAB	Day to Day Evaluation and Record Submission, Mid term exam
11	Write a program for solving ordinary differential equation by numerical methods	Solve the using nur			$\frac{dy}{dx} + y =$	0 with y(0	0) = 0 and	d y(1) = 1	Lecture and Practice MATLAB	(week 18) Day to Day Evaluation and Record Submission, Mid term exam (week 18)
12	Training and testing data using neural networks	x= [88067 42 79380 42 71672 35 63855 33 58370 37 53477 29	.5 60 .5 60 60 60	1.9 2.1 2.3 2.5 2.7 2.9	1170 1097 1089 954 1030 780				Lecture and Practice MATLAB	Day to Day Evaluation and Record Submission, Mid term exam (week 18)

		51480 11.5 60 87680 44.7 54 78375 45 54 69948 40 54 61740 35 54 55848 43 54 49396 39 54 45100 28 54]; y = [2468	3.17001.911502.111002.310802.510002.78002.97403.17202545	2557	2119		
		145823111813];The input of a data of corresponding output Train and test a neur	ıt is y.	-	2105 and the		
13	Interpretation of data using fuzzy logic toolbox	Problems to build sy How to assign fuzzy inference systems	stems using fuz	zy logic tool b		Lecture and Practice MATLAB	Day to Day Evaluation and Record Submission, Mid term exam (week 18)
14	Solve optimization problems using genetic algorithms	Optimize the given f genetic algorithms to Eg: Min $f(x)=x*sin$ $x \in [0,10]$	ool bar. (x)+x*cos(2*x)	-	roblem using	Lecture and Practice MATLAB	Day to Day Evaluation and Record Submission, Mid term exam (week 18)
15	Design a simple mechanical system using Simulink/SimMechanics	Model a vibrating m	ass in MATLA	B with Simme	chanics	Lecture and Practice MATLAB	Day to Day Evaluation and Record Submission,

			Mid term exam (week 18)
16	Revision of Cycle 2		
17	Revision of Cycle 1,2		
18	Mid Term Examination-		
	П		
19-20	End Term Examination		